Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dong-Dong Lin, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.110$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Imidazolium 2,4-dihydroxybenzoate

The title compound, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-}$, consists of imidazolium cations and 2,4-dihydroxybenzoate anions that link to each other via hydrogen bonding. Furthermore, $\pi-\pi$ stacking is observed between parallel benzene rings and between benzene and imidazole rings.

Comment

Recently, we have been interested in $\pi-\pi$ stacking as it is an important non-covalent intermolecular interaction and is correlated with the electron transfer process in some biological systems (Deisenhofer \& Michel, 1989). As part of our ongoing investigation into the nature of $\pi-\pi$ stacking (Li et al., 2005; $\mathrm{Xu} \& \mathrm{Xu}, 2005$), we present here the crystal structure of the title compound, (I).

(I)

The crystal structure of (I) consists of imidazolium cations and dihydroxybenzoate anions which link to each other via hydrogen bonds (Fig. 1). The imidazolium cation displays a nearly symmetric structure, the differences between $\mathrm{N} 1-\mathrm{C} 8$

Figure 1
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds.

Received 20 December 2005 Accepted 22 December 2005 Online 7 January 2006
and $\mathrm{N} 2-\mathrm{C} 8$ bond distances and between $\mathrm{N} 1-\mathrm{C} 10$ and $\mathrm{N} 2-$ C 9 bond distances are smaller than three times the standard uncertainties (Table 1). The dihydroxybenzoate has a planar configuration, the dihedral angle between the carboxyl and benzene planes being 3.8 (3) ${ }^{\circ}$.

The packing is shown in Fig. 2. The face-to-face separation of 3.493 (4) A between parallel benzene and benzene ${ }^{\text {iv }}$ planes [symmetry code: (iv) $-x, 1-y,-z$] clearly shows the existence of $\pi-\pi$ stacking. The imidazole plane is approximately parallel to the benzene ${ }^{\mathrm{v}}$ plane [dihedral angle $=11.25(9)^{\circ}$; symmetry code: (v) $\left.\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right]$. The separation of 3.593 (3) A from the C9 atom to the benzene ${ }^{\mathrm{v}}$ plane and the centroid-to-centroid separation of 3.718 (2) \AA between the imidazole and benzene rings also suggest the existence of weak $\pi-\pi$ stacking between dihydroxybenzoate and imidazolium ions.

Extensive hydrogen bonding stabilizes the crystal structure (Table 2).

Experimental

$\mathrm{MnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1 mmol), 2,4-dihydroxybenzoic acid (2 mmol), imidazole (2 mmol) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ were dissolved in a water/ ethanol solution ($20 \mathrm{ml}, 1: 1 \mathrm{v} / \mathrm{v}$). The mixture was refluxed for 1 h and filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after 5 d .

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-}$
$M_{r}=222.20$
Monoclinic, $P 2_{1} / n$
$a=10.172$ (6) А
$b=9.824(5) \AA$
$c=11.433(5) \AA$
$\beta=116.99$ (2) ${ }^{\circ}$
$V=1018.1$ (9) \AA^{3}
$Z=4$
$D_{x}=1.450 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8262 reflections
$\theta=3.0-27.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, pale-brown
$0.12 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffract-
1921 reflections with $I>2 \sigma(I)$ ometer
ω scans
Absorption correction: none
9806 measured reflections
2335 independent reflections
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 13$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.110$
$S=1.12$
2335 reflections
146 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0586 P)^{2}\right. \\
\quad \\
\quad+0.1067 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.058(6)
\end{array}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1-\mathrm{C} 8$	$1.3186(18)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.3620(18)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.3620(19)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.2643(15)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.3124(17)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.2680(15)$

The packing of (I) showing $\pi-\pi$ stacking between aromatic rings [symmetry codes: (iv) $-x, 1-y,-z$; (v) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$].

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.86	1.93	$2.750(2)$	160
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	1.88	$2.736(2)$	174
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	0.86	1.76	$2.537(2)$	149
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.90	1.80	$2.674(2)$	162
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.37	$3.254(3)$	158
Symmetry codes:	(i)	$-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;$	(ii)	$-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;$
$x+1, y, z+1$.				(iii)
x				

Hydroxy H atoms were located in a difference Fourier map and refined as riding, with $\mathrm{O}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the final cycles of refinement in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Xu, T.-G. \& Xu, D.-J. (2005). J. Coord. Chem. 58, 437-442.

