Received 20 December 2005

Accepted 22 December 2005

Online 7 January 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dong-Dong Lin, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.038 wR factor = 0.110 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_3H_5N_2^+$, $C_7H_5O_4^-$, consists of imidazolium cations and 2,4-dihydroxybenzoate anions that link to each other *via* hydrogen bonding. Furthermore, π - π stacking is observed between parallel benzene rings and between benzene and imidazole rings.

Imidazolium 2,4-dihydroxybenzoate

Comment

Recently, we have been interested in π - π stacking as it is an important non-covalent intermolecular interaction and is correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation into the nature of π - π stacking (Li *et al.*, 2005; Xu & Xu, 2005), we present here the crystal structure of the title compound, (I).

The crystal structure of (I) consists of imidazolium cations and dihydroxybenzoate anions which link to each other *via* hydrogen bonds (Fig. 1). The imidazolium cation displays a nearly symmetric structure, the differences between N1-C8

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

and N2–C8 bond distances and between N1–C10 and N2–C9 bond distances are smaller than three times the standard uncertainties (Table 1). The dihydroxybenzoate has a planar configuration, the dihedral angle between the carboxyl and benzene planes being $3.8~(3)^{\circ}$.

The packing is shown in Fig. 2. The face-to-face separation of 3.493 (4) Å between parallel benzene and benzene^{iv} planes [symmetry code: (iv) -x, 1 - y, -z] clearly shows the existence of π - π stacking. The imidazole plane is approximately parallel to the benzene^v plane [dihedral angle = 11.25 (9)°; symmetry code: (v) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$]. The separation of 3.593 (3) Å from the C9 atom to the benzene^v plane and the centroid-to-centroid separation of 3.718 (2) Å between the imidazole and benzene rings also suggest the existence of weak π - π stacking between dihydroxybenzoate and imidazolium ions.

Extensive hydrogen bonding stabilizes the crystal structure (Table 2).

Experimental

 $MnCl_2 \cdot 2H_2O$ (1 mmol), 2,4-dihydroxybenzoic acid (2 mmol), imidazole (2 mmol) and Na_2CO_3 (1 mmol) were dissolved in a water/ ethanol solution (20 ml, 1:1 ν/ν). The mixture was refluxed for 1 h and filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after 5 d.

Crystal data

$C_{3}H_{5}N_{2}^{+}\cdot C_{7}H_{5}O_{4}^{-}$	$D_x = 1.450 \text{ Mg m}^{-3}$
$M_r = 222.20$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 8262
a = 10.172 (6) Å	reflections
b = 9.824 (5) Å	$\theta = 3.0-27.0^{\circ}$
c = 11.433 (5) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 116.99 \ (2)^{\circ}$	T = 295 (2) K
$V = 1018.1 (9) \text{ Å}^3$	Prism, pale-brown
Z = 4	$0.12\times0.10\times0.10$ mm
Data collection	
Rigaku R-AXIS RAPID diffract-	1921 reflections with $I > 2\sigma(I)$
ometer	$R_{\rm int} = 0.038$
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: none	$h = -12 \rightarrow 13$
9806 measured reflections	$k = -12 \rightarrow 12$
2335 independent reflections	$l = -14 \rightarrow 14$
Refinement	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0586P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.1067P]
$wR(F^2) = 0.110$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
2335 reflections	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
146 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.058 (6)

Table 1

Selected bond lengths (Å).

N1-C8	1.3186 (18)	N2-C9	1.3620 (18)
N1-C10	1.3620 (19)	O1-C1	1.2643 (15)
N2-C8	1.3124 (17)	O2-C1	1.2680 (15)

Figure 2

The packing of (I) showing $\pi - \pi$ stacking between aromatic rings [symmetry codes: (iv) -x, 1 - y, -z; (v) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$].

Table 2

Hydrogen-bond	geometry ([A, °]).
---------------	------------	--------	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O1	0.86	1.93	2.750 (2)	160
$N2-H2 \cdot \cdot \cdot O2^{i}$	0.86	1.88	2.736 (2)	174
$O3-H3A\cdots O2$	0.86	1.76	2.537 (2)	149
$O4-H4A\cdots O1^{ii}$	0.90	1.80	2.674 (2)	162
$C9-H9\cdots O3^{iii}$	0.93	2.37	3.254 (3)	158
Symmetry codes:	(i) $-x + \frac{3}{2}, y$	$v - \frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x + \frac{1}{2}, y - \frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$ (iii)

x + 1, y, z + 1.

Hydroxy H atoms were located in a difference Fourier map and refined as riding, with O-H = 0.86 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm O})$. Other H atoms were placed in calculated positions, with C-H = 0.93 Å and N-H = 0.86 Å, and included in the final cycles of refinement in riding mode, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm carrier})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Xu, T.-G. & Xu, D.-J. (2005). J. Coord. Chem. 58, 437–442.

0452 Lin et al. • $C_3H_5N_2^+ \cdot C_7H_5O_4^-$